Extended Lagrange interpolation in weighted uniform norm
نویسنده
چکیده
The author studies the uniform convergence of extended Lagrange interpolation processes based on the zeros of Generalized Laguerre polynomials. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
Extended Lagrange interpolation on the real line
Let {pm(wα)}m be the sequence of the polynomials orthonormal w.r.t. the Sonin-Markov weight wα(x) = e−x 2 |x|. The authors study extended Lagrange interpolation processes essentially based on the zeros of pm(wα)pm+1(wα), determining the conditions under which the Lebesgue constants, in some weighted uniform spaces, are optimal.
متن کاملStieltjes polynomials and Lagrange interpolation
Bounds are proved for the Stieltjes polynomial En+1, and lower bounds are proved for the distances of consecutive zeros of the Stieltjes polynomials and the Legendre polynomials Pn. This sharpens a known interlacing result of Szegö. As a byproduct, bounds are obtained for the Geronimus polynomials Gn. Applying these results, convergence theorems are proved for the Lagrange interpolation process...
متن کاملOn a Weighted Interpolation of Functions with Circular Majorant
Denote by Ln the projection operator obtained by applying the Lagrange interpolation method, weighted by (1 − x), at the zeros of the Chebyshev polynomial of the second kind of degree n + 1. The norm ‖Ln‖ = max ‖f‖∞≤1 ‖Lnf‖∞, where ‖ · ‖∞ denotes the supremum norm on [−1, 1], is known to be asymptotically the same as the minimum possible norm over all choices of interpolation nodes for unweight...
متن کاملOn an Interpolation Process of Lagrange–hermite Type
Abstract. We consider a Lagrange–Hermite polynomial, interpolating a function at the Jacobi zeros and, with its first (r−1) derivatives, at the points ±1. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator in certain suitable weighted L-spaces, 1 < p < ∞, proving a Marcinkiewicz inequality involving the derivative of the polynomial at ...
متن کاملA Survey of Weighted Polynomial Approximation with Exponential Weights
Let W : R → (0, 1] be continuous. Bernstein’s approximation problem, posed in 1924, deals with approximation by polynomials in the weighted uniform norm f → ‖fW‖L∞(R). The qualitative form of this problem was solved by Achieser, Mergelyan, and Pollard, in the 1950’s. Quantitative forms of the problem were actively investigated starting from the 1960’s. We survey old and recent aspects of this t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 211 شماره
صفحات -
تاریخ انتشار 2009